
Automating the database onboarding using Ansible®

Introduction

In the digital era, infrastructure is a key building block to the connected business, and Infrastructure
protection is the need of the hour for business continuity.

With infrastructure ready, the next task for the administrator is to protect the workload. For workload
protection, admins would onboard the workloads, configure them and then schedule the backups in
backup software. In a typical data center, there are different workloads that need to be protected. It
would be easier to deploy and configure manually for a smaller number of deployments (say, less than
10). When the business grows esp. in today's cloud era, infrastructure scales very quickly and grows
massively. With growing workloads, manually protecting each workload is a tedious and uphill task for
admins and manual operations are more prone to errors.

With Infrastructure-as-Code (IaC), administrators' effort in building the infrastructure and protecting
it has reduced drastically, which helps the business go live sooner than expected. This document
describes how to use IaC (Ansible) to onboard, configure and protect your database workload with
Commvault.

This document is intended for administrators, and engineers who can leverage automation to simplify
their day-to-day backup management operations.

Automation is key to business
Automation brings in a lot of advantages, as this would simplify the admin’s day-to-day activity and

allow him to concentrate on critical work. More importantly, the workloads are protected in quick

time with reduced business downtime risks and bringing in cost-effectiveness and IT efficiency for the

organization.

With automation, there are proven steps that can execute any number of times, faster, and parallel

execution for different servers and workloads that needs protection. To automate, you can use

Commvault's package with the most used IaC (Infrastructure as service) framework such as Terraform,

and Ansible for deployment and configuration management.

To demonstrate the importance of

Automation, we did an experiment where

we onboarded the Oracle database on Linux

manually and automated way.

Manual onboarding involved adding a

storage and plan, installing Oracle package

on the client, and starting the backup.

Similar steps were executed with the

automated Ansible (as outlined in the next

section) script and the results were not

surprising and expected. With automation,

the operations were executed in parallel,

and the efforts were constant.

0

50

100

150

200

0 2 4 6 8 10

Ti
m

e
Sp

en
t

(M
in

u
te

s)

Deployments

Database Onboarding activity

Manual Automation

With the increased deployment and

repetitive stuff, automation saved a lot of

time. With 3 deployments, there were

around ~50 minutes of effort that was

saved.

Note that the results are based on the

environment the tests are conducted. As

seen from the graph, there is a linear effort

saved when the deployment is high and

repetitive.

How to onboard database with Commvault Ansible Collection
In an Ansible world, user writes an YAML file with tasks to be run on the managed node. The

controlling node where the ansible playbook is executed, takes the YAML as input and runs the

suitable package on the managed node to get the desired output.

As an example, the steps show how to onboard the Oracle database with Commvault’s Ansible

collection. Here we create an individual yaml for each of the tasks for more readable and import in

the main.yml.

(1) Define the variables in main.yml.

0

50

100

150

200

0 2 4 6 8 10 12

M
in

u
te

s
sa

ve
d

Deployments

Man hours saved with
Automation

- name: "Database deployment and configuration"

 hosts: localhost

 remote_user: root

 become: true

 vars:

 - var_storageName: 'store1'

 - var_plan: 'plan1'

 - var_clientName: 'oracle.commvault.com'

 - var_dbInst: 'ORCL'

 - var_dbUser: 'sys'

 - var_dbPwd: 'databasePassword'

 - var_dbPwd2: "{{ var_dbPwd|b64encode }}"

 - var_dbHome: "/home/oracle”

 - var_osUser: "oracle"

 - import_tasks:

 createStorage.yml

 createPlan.yml

 addServer.yml

 getClientId.yml

 getInstanceId.yml

 reConfigDb.yml

 getDefaultSubClient.yml

 startBackup.yml

...

(2) Create the backup destination (Storage target).

The task would create a disk library on the media server ‘mediaAgent.commvault.com’.

createStorage.yaml

 tasks:

 - name: "Creating disk Storage"

 commvault.ansible.storage.disk.add:

 webserver_hostname: 'webserver.commvault.com'

 commcell_username: 'admin'

 commcell_password: 'password'

 name: "{{ var_storageName }}"

 media_agent: "mediaAgent.commvault.com"

 mount_path: "e:\\DL2"

 deduplication_db_path: "e:\\{{ var_storageName }}"

 tags: storage

(3) Create the plan with a suitable RPO

createPlan.yml

 - name: "Creating plan"

 commvault.ansible.plans.add:

 name: "{{ var_plan }}"

 type: "Server"

 storage_pool_name: "{{ var_storageName }}"

 rpo_minutes: 100

 register: plan_resp

 tags: plan

 - set_fact:

 plan_id: "{{plan_resp.id | default(1)}}"

(4) Once the plan is created, add the Oracle server to the Commvault cell. This step will install

agent package, create sub clients and associate with the server plan.

This can be achieved by using REST API. The REST API is to be obtained from the Command

Center “equivalent API” and then you need to convert the json payload to YAML. Or the

REST APIs can be obtained from REST API reference documentation.
addServer.yml

- name: "Add Oracle Server"

 commvault.ansible.request:

 method: 'POST'

 url: '{0}/createTask'

 payload:

 taskInfo:

 task:

 taskFlags:

 disabled: false

 taskType: IMMEDIATE

 initiatedFrom: GUI

 associations:

 - clientId: 0

 commCellId: 2

 subTasks:

 - subTask:

 subTaskType: ADMIN

 operationType: INSTALL_CLIENT

 options:

 adminOpts:

 updateOption:

 rebootClient: true

 plan:

 planId: 1

 clientInstallOption:

 clientDetails:

 - clientEntity:

 clientId: 0

 clientName: "{{ var_clientName }}"

 commCellId: 2

 installOSType: UNIX

 discoveryType: MANUAL

 installerOption:

 RemoteClient: false

 requestType: PRE_DECLARE_CLIENT

 User:

 userId: 1

 userName: admin

 Operationtype: INSTALL_CLIENT

 CommServeHostName: “webserver.commvault.com”

 clientComposition:

 - overrideSoftwareCache: false

 clientInfo:

 client:

 cvdPort: 0

 evmgrcPort: 0

 components:

https://documentation.commvault.com/2023/essential/45618_rest_api_reference.html

 - osType: Unix

 ComponentId: 1204

 - osType: Unix

 consumeLicense: false

 ComponentId: 1301

 commonInfo:

 globalFilters: UseCellLevelPolicy

 fileSystem:

 configureForLaptopBackups: false

 packageDeliveryOption: CopyPackage

 installFlags:

 install32Base: false

 disableOSFirewall: false

 addToFirewallExclusion: true

 killBrowserProcesses: true

 ignoreJobsRunning: false

 stopOracleServices: false

 skipClientsOfCS: false

 restoreOnlyAgents: false

 overrideClientInfo: true

 firewallInstall:

 enableFirewallConfig: false

 firewallConnectionType: 0

 portNumber: 0

 clientAuthForJob:

 userName: "root"

 password: “base64EncodedPassword”

 reuseADCredentials: false

 commonOpts:

 subscriptionInfo: <Api_Subscription subscriptionId ="136"/>

 register: response

- set_fact:

 jobid_addServer: "{{ response.response.jobIds[0] }}"

- debug:

 msg: "{{ jobid_addServer }}"

- name: "Wait for Job Status"

 commvault.ansible.job.status:

 job_id: "{{ jobid_addServer | int }}"

 wait_for_job_completion: true

(5) Get the client ID after the successful client import to the Commcell.

 - name: "Get client id"

 commvault.ansible.request:

 method: 'GET'

 url: '{0}/GetId?clientname={{ var_clientName }}'

 register: cliIdResp

 - set_fact:

 client_id: "{{ cliIdResp.response.clientId }}"

(6) Get the instance Id

 - name: "Get instance id"

 commvault.ansible.request:

 method: 'GET'

 url: '{0}/instance?clientId={{ client_id }}'

 register: InstIdResp

 - set_fact:

 instance_id:

 "{{ InstIdResp.response.instanceProperties[0].instance.instanceId

}}"

 instance_guid:

 "{{InstIdResp.response.instanceProperties[0].instance.instanceGUID}}

(7) Re-configure the instance to use the database credentials
 - name: "Re-configure the instance"

 commvault.ansible.request:

 method: 'POST'

 url: '{0}/instance/{{ instance_id }}'

 payload:

 instanceProperties:

 instance:

 instanceId: "{{ instance_id|int }}"

 applicationId: 22

 clientId: "{{ client_id|int }}"

 oracleInstance:

 oracleUser:

 userName: "{{ var_osUser }}"

 oracleHome: "{{var_dbHome|safe}}"

 sqlConnect:

 userName: "{{var_dbUser}}"

 password: "{{var_dbPwd2}}"

 domainName: "{{ var_dbInst }}"

 confirmPassword: "{{var_dbPwd2}}"

 savedCredential: {}

 useCatalogConnect: false

 blockSize: 1048576

 oracleStorageDevice:

 commandLineStoragePolicy:

 storagePolicyId: "{{plan_id|int}}"

 storagePolicyName: "{{var_plan}}"

 logBackupStoragePolicy:

 storagePolicyId: "{{plan_id|int}}"

 storagePolicyName: "{{var_plan}}"

 crossCheckTimeout: 600

 oracleWalletAuthentication: false

 planEntity:

 planId: "{{plan_id|int}}"

 association:

 entity:

 - displayName: "{{var_clientName}}"

 clientId: "{{ client_id|int }}"

 instanceGUID: "{{ instance_guid }}"

 instanceName: "{{ var_dbInst }}"

 appName: Oracle

 applicationId: 22

 clientName: "{{var_clientName}}"

 instanceId: "{{ instance_id|int }}"

 register: reconf_resp
(8) Get default subclient id

 - name: "Get subclient ID"

 commvault.ansible.request:

 method: 'GET'

 url: '{0}/subclient?clientId={{ client_id }}'

 register: subCliIDResp

 when: reconf_resp is defined

 - set_fact:

 subclient_Id: "{{ subCliIDResp.response.\

 subClientProperties[0].subClientEntity.subclientId }}"
(9) Execute the backup

 - name: "Start Backup"

 commvault.ansible.request:

 method: 'POST'

 url: "{0}/Subclient/{{ subclient_Id }}/\

 action/backup?backupLevel=Incremental&runIncrementalBackup=false

&incrementalLevel=AFTER_SYNTH"

 register: backupResp

 when: reconf_resp is defined

 tags: bkup

 - debug:

 msg: "backup response: {{ backupResp }} "

 - name: "Wait for Job Status"

 commvault.ansible.job.status:

 job_id: "{{ backupResp.response.jobIds[0] | int }}"

 wait_for_job_completion: false

More information on the supported Ansible functionality can be found in the github.

Summary
With Commvault Ansible collection, the functionality is not limited to just the onboarding of

workloads. It could be extended to another use case such as governance and compliance, Job

management, and so on.

In conclusion, enterprises deal with different kinds of workloads that need to managed and protected.

Automation becomes a key to cost-effective and efficient backup and recovery for these workloads.

Automation speeds up deployment, and configuration operations while minimizing error and reducing

costs. It guarantees a consistent experience for database configuration and deployment thus boosting

the confidence of admins in managing their workloads.

Reference
1. Commvault Ansible Collection

2. Commvault REST API Reference

https://github.com/Commvault/ansiblev2/
https://github.com/Commvault/ansiblev2/
https://documentation.commvault.com/2023/essential/45618_rest_api_reference.html

